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Abstract: This paper investigates the problem of global finite-time stabilization by output feedback for a class of
high-order time-varying nonlinear systems with uncertainties. By introducing sign function and necessarily modi-
fying the homogeneous domination approach, a continuous output feedback controller is successfully constructed
to guarantee the global uniform finite-time stability of the resulting closed-loop system. A simulation example is
provided to illustrate the effectiveness of the proposed approach.
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1 Introduction

In this paper, we consider the following high-order
time-varying nonlinear systems:

ẋi = xpi
i+1 + fi(t, x, u), i = 1, · · · , n − 1

ẋn = upn + fn(t, x, u)
(1)

wherex = (x1, · · · , xn)T ∈ Rn, u ∈ R are the sys-
tem state and input, respectively;pi ∈ R≥1

odd :={p
q | p

and q are positive odd integers, andp ≥ q} are said to
be the high orders of the system;fi : R+×Rn×R →
R, i = 1, · · · , n are unknown continuous functions of
all the states and the control input.

The importance for studying such system is ex-
emplified in the papers[1,2], where state feedback
controllers were used to stabilize the underactuated,
weakly coupled, unstable mechanical system. How-
ever, to globally stabilize of system (1) using only
its measurable output has been widely recognized as
a challenging problem due to the lack of nonlinear
version of separation principle. Moreover, Jacobian
linearization of system (1) at the origin being neither
controllable nor feedback linearizable for the case of
pi > 1, leads to that the output feedback stabilization
of system (1) becomes more complex. Mainly thanks
to the homogeneous domination approach introduced
in [3], the novelty of which is that no precise infor-
mation about the nonlinearities is needed, the output
feedback stabilization of system (1) has been well-
studied and a number of interesting results have been
achieved over the past years, for example, one can

see [4-10] and the references therein. Nevertheless, it
should be noted that most of the existing works only
consider the feedback stabilizer that makes the trajec-
tories of the systems converge to the equilibrium as
the time goes to infinity.

Compared to the asymptotic stabilization via out-
put feedback, the finite-time stabilization by output
feedback is a relatively new problem. In fact, even
in the case of global stabilization of system (1) us-
ing state feedback, there are very few results in the
literature[11-16]. In the case when parts of the states
are not measurable, to globally stabilize system (1)
only using limited measurable states becomes chal-
lenging. Recently, some attempts have been made[17-
19]. In particular, [19] solved the finite-time out-
put feedback stabilization problem under the condi-
tion thatfi satisfies

|fi(t, x, u)| ≤ c

i
∑

j=1

|xj |
ri+τ

rj

where τ is some ratios of odd integers in
(− 2

(2n+1)p1···pn−1
, 0). Naturally, the following inter-

esting problem is proposed:Is it possible to relax the
assumption onτ andri ? Under the weaker condition,
can a finite-time output feedback stabilizing controller
be designed?

In this paper, by introducing a combined homo-
geneous domination and sign function approach, and
overcoming some essential difficulties such as the
weaker assumption on the system growth, the appear-
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ance of the sign function and the construction of a
C1, proper and positive definite Lyapunov function,
wewill focus on solving the above problem.

2 Mathematical Preliminaries

The following preliminaries are to be used throughout
the paper.

Notations. Throughout this paper, the follow-
ing notations are adopted.R+ denotes the set of
all nonnegative real numbers andRn denotes the
real n-dimensional space. For any vectorx =
(x1, · · · , xn)T ∈ Rn denotex̄i = (x1, · · · , xi)

T ∈

Ri, i = 1, · · · , n, |x| = (
∑n

i=1 x2
i )

1
2 . K denotes the

set of all functions: R+ → R+, which are contin-
uous, strictly increasing and vanishing at zero;K∞

denotes the set of all functions which are of classK
and unbounded. A sign functionsign(x) is defined
as follows: sign(x) = 1, if x > 0; sign(x) = 0, if
x = 0 andsign(x) = −1, if x < 0. Besides, the ar-
guments of the functions will be omitted or simplified,
whenever no confusion can arise from the context. For
instance, we sometimes denote a functionf(x(t)) by
simply f(x), f(·) or f .

Definition 1[20]. Weighted Homogeneity: For
fixed coordinates(x1, · · · , xn) ∈ Rn and real num-
bers ri > 0, i = 1, · · · , n.

• the dilation ∆ε(x) is defined by∆ε(x) =
(εr1x1, · · · , ε

rnxn) for any ε > 0, whereri is called
the weights of the coordinates. For simplicity, we de-
fine dilation weight∆ = (r1, · · · , rn).

• a functionV ∈ (Rn, R) is said to be homoge-
neous of degreeτ if there is a real numberτ ∈ R
such thatV (∆ε(x)) = ετV (x1, · · · , xn) for anyx ∈
Rn \ {0}, ε > 0.

• a vector field f ∈ (Rn, Rn) is said to be
homogeneous of degreeτ if there is a real number
τ ∈ R such thatfi(∆ε(x)) = ετ+rifi(x), for any
x ∈ Rn \ {0}, ε > 0, i = 1, · · · , n.

• a homogeneousp-norm is defined as‖x‖△,p =

(
∑n

i=1 |xi|
p/ri)1/p for all x ∈ Rn, for a constantp ≥

1. For simplicity, in this paper, we choosep = 2 and
write ‖x‖△ for ‖x‖△,2.

Lemma 1[20]. Given a dilation weight∆ =
(r1, · · · , rn), supposeV1(x) andV2(x) are homoge-
neous functions of degreeτ1 and τ2, respectively.
Then V1(x)V2(x) is also homogeneous with respect
to the same dilation weight∆. Moreover, the homo-
geneous degree ofV1(x)V2(x) is τ1 + τ2.

Lemma 2[20]. SupposeV : Rn → R is a ho-
mogeneous function of degreeτ with respect to the
dilation weight∆. Then the following holds:

(i) ∂V/∂xi is homogeneous of degreeτ − ri with
ri being the homogeneous weight ofxi.

(ii) There is a constantc such thatV (x) ≤
c‖x‖τ

△. Moreover, ifV (x) is positive definite, then
c‖x‖τ

△ ≤ V (x), wherec is a constant.

Lemma 3[21]. Consider the nonlinear system

ẋ = f(t, x) with f(t, 0) = 0 x ∈ Rn (2)

wheref : R+ × U0 → Rn is continuous with respect
to x on an open neighborhoodU0 of the originx =
0. Suppose there is aC1 function V (t, x) defined on
Û ⊆ U0×R, whereÛ is a neighborhood of the origin,
classK functionsπ1 andπ2, real numbersc > 0 and
0 < α < 1, for t ∈ [t0, T ) and x ∈ Û such that
(i) π1(|x|) ≤ V (t, x) ≤ π2(|x|), ∀t ≥ t0, ∀x ∈ Û ;
(ii)V̇ (t, x) + cV α(t, x) ≤ 0, ∀t ≥ t0, ∀x ∈ Û . Then,
the origin of (2) is uniformly finite-time stable with

T ≤ V 1−α(t0,x(t0))
c(1−α) for initial conditionx(t0) in some

open neighborhood̂U of the origin at initial timet0. If
Û = U0 = Rn andπ1 andπ2 are classK∞ functions,
the origin of system (2) is globally uniformly finite-
time stable.

Lemma 4[22]. For x ∈ R, y ∈ R, p ≥ 1 and
c > 0 are constants, the following inequalities hold:
(i) |x + y|p ≤ 2p−1|xp + yp|, (ii) (|x| + |y|)1/p ≤
|x|1/p + |y|1/p ≤ 2(p−1)/p(|x| + |y|)1/p, (iii) ||x| −
|y||p ≤ ||x|p−|y|p|, (iv) |x|p + |y|p ≤ (|x|+ |y|)p, (v)
|[x]1/p−[y]1/p| ≤ 21−1/p|x−y|1/p, (vi) |[x]p−[y]p| ≤
c|x − y|||x − y|p−1 + |y|p−1|.

Lemma 5[23]. If p = a
b ∈ R≥1

odd with a ≥ b ≥ 1
being some real numbers, then for anyx, y ∈ R

|xp − yp| ≤ 21− 1
b

∣

∣

∣[x]a − [y]a
∣

∣

∣

1
b

Lemma 6[24]. Let x, y be real variables, then for
any positive real numbersa, m andn, one has

a|x|m|y|n ≤ b|x|m+n

+
n

m + n

(m + n

m

)−m
n

a
m+n

n b−
m
n |y|m+n,

whereb > 0 is any real number.
Lemma 7[23]. f(x) = sgn(x)|x|a is contin-

uously differentiable, andḟ(x) = a|x|a−1, where
a ≥ 1, ∈ R. Moreover, ifx = x(t), t ≥ 0, then
df(x(t))

dt = a|x|a−1ẋ(t).

3 Output feedback controller design

3.1 Assumption

The following assumption is imposed on system (1) in
this paper.
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Assumption 1. For i = 1, · · · , n, there are con-
stantsc > 0 andτ ∈ (− 1

∑n
l=1 p1···pl−1

, 0) such that

|fi(t, x, u)| ≤ c

i
∑

j=1

|xj |
ri+τ

rj (3)

where r1 = 1, ri+1 = ri+τ
pi

, i = 1, · · · , n and
∑n

l=1 p1 · · · pl−1 for the case ofl = 1.
The objective of this paper is to design an output

feedback controller for system (1) under Assumption
1 such that the closed-loop system is globally finite-
time stable.

Remark 1. In the recent paper [19], it is assumed
that τ = p

q with p being any even integer andq be-
ing any odd integer, thenri is always a ratio of odd
integers. Therefore, an interesting problem is how to
design a finite-time output feedback controller for (1)
under the weaker assumption ofτ and ri being ar-
bitrary real numbers in some interval. In this paper,
we will ingeniously combine homogeneous domina-
tion theory and sign function approach to solve this
problem. Furthermore, it should be mentioned that
the value range ofτ in Assumption 1 is larger than
that in [19].

We introduce an equivalent coordinates transfor-
mation:

z1 = x1, zi =
xi

Lκi
, i = 2, · · · , n, υpn =

upn

Lκn+1

(4)
whereκ1 = 0, κi+1 = κi+1

pi
, i = 1, · · · , n − 1 and

L > 1 is a constant to be determined. Then, under
(4), system (1) is transformed into:

żi = Lxpi
i+1 +

fi

Lκi
, i = 1, · · · , n − 1

żn = Lυpn +
fn

Lκn

y = z1

(5)

3.2 State-feedback controller design for
nominal nonlinear system

We first construct a state feedback controller for the
nominal nonlinear system of (5)

żi = Lzpi
i+1, i = 1, · · · , n − 1

żn = Lυpn
(6)

Step 1. Let ξ1 = [z1]
1/r1 and choose the Lya-

punov function

V1 = W1 =

∫ z1

z∗1

[

[s]1/r1 − [z∗1 ]1/r1

]2−τ−r1

ds

(7)

with z∗1 = 0. From (6), it follows that

V̇1 ≤ −nLξ2
1 + L[ξ1]

2−τ−r1(zp1
2 − z∗p1

2 ) (8)

where the virtual controller is chosen as

z∗2 = −n1/p1z
(r1+τ)/p1

1 := −βr2
1 [ξ1]

r2 (9)

Step i (i = 2, · · · , n). In this step, we can ob-
tain the following property, whose similar proof can
be found in [23] and hence is omitted here.

Proposition 1. Assume that at stepi − 1, there is
a C1, proper and positive definite Lyapunov function
Vi−1, and a set of virtual controllersz∗1 , · · · , z

∗
i defined

by

z∗1 = 0, ξ1 = [z1]
1/r1 − [z∗1 ]1/r1

z∗2 = −βr2
1 [ξ1]

r2 , ξ2 = [z2]
1/r2 − [z∗2 ]1/r2

...
...

z∗i = −βri
i−1[ξi−1]

ri , ξi = [zi]
1/ri − [z∗i ]1/ri

(10)
with β1 > 0, · · · , βi−1 > 0 being constant, such that

V̇i−1 ≤ −(n − i + 2)L

i−1
∑

j=1

ξ2
j

+[ξi−1]
(2σ−τ−ri−1)(z

pi−1

i − z
∗pi−1

i )

(11)

Then theith Lyapunov function defined by

Vi = Vi−1 +

∫ zi

z∗i

[

[s]1/ri − [z∗i ]1/ri

]2−τ−ri

ds

(12)
is C1, proper and positive definite, and there isz∗i+1 =

−β
ri+1/σ
i [ξi]

ri+1/σ such that

V̇i ≤ −(n − i + 1)L

i
∑

j=1

ξ2
j

+L[ξi]
2−τ−ri(zpi

i+1 − z∗pi
i+1)

(13)

Hence at stepn, choosing

Vn =
n
∑

i=1

∫ zi

z∗i

[

[s]1/ri − [z∗i ]1/ri

]2−τ−ri

ds

z∗n+1 = −βrn+1
n [ξn]rn+1 = −

[

n
∑

i=1

β̄i[zi]
1/ri

]rn+1

(14)
with β̄i = βn · · · βi, from Proposition 1, we arrive at

V̇n ≤ −L
n
∑

j=1

ξ2
j + L[ξn]2−τ−rn(vpn − z∗pn

n+1)

(15)
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3.3 Reduced-order observer and gain assign-
ment

Sincez2, · · · , zn are unmeasurable, we construct a ho-
mogeneous observer

η̇i = −Lli−1ẑ
pi−1

i

ẑi = [ηi + li−1ẑi−1]
ri/ri−1 , i = 2, · · · , n

(16)

whereẑ1 = z1 andls > 0; s = 1, · · · , n − 1 are the
gains to be determined. By the certainty equivalence
principle, we can replacezi with ẑi in (14) and obtain
an output feedback controller

v(ẑ) = −
[

n
∑

i=1

β̄i[ẑi]
1/ri

]rn+1

(17)

whereẑ = (ẑ1, ẑ2, · · · , ẑn) andẑ1 = z1. Considering

Ui =

∫ [zi]
(2−τ−ri−1)/ri

[γi]
(2−τ−ri−1)/ri−1

([s]ri−1/(2−τ−ri−1) − γi)ds

(18)
whereγi = ηi + li−1zi−1 and setting the observation
error ei = [z

pi−1

i − ẑ
pi−1

i ]1/(ripi−1), for i = 2, · · · , n,
from (6), (16), (18) and Lemma 7, it follows that

U̇i = L
∂Ui

∂zi
zpi
i+1 + L

∂Ui

∂zi−1
z

pi−1

i − L
∂Ui

∂ηi
li−1ẑ

pi−1

i

=
2 − τ − ri−1

ri
L|zi|

(2−τ−ri−1−ri)/ri

×([zi]
ri−1/ri − γi)z

pi
i+1

−Lli−1(z
pi−1

i − ẑ
pi−1

i )

×
(

[zi]
(2−τ−ri−1)/ri − [ẑi]

(2−τ−ri−1)/ri

)

−Lli−1(z
pi−1

i − ẑ
pi−1

i )

×
(

[ẑi]
(2−τ−ri−1)/ri − [γi]

(2−τ−ri−1)/ri−1

)

(19)
wherezn+1 = v(ẑ).

Each term on the right-hand side of (19) can be
estimated by the following propositions whose proofs
are given in Appendix.

Proposition 2. There exists a positive constantλi

such that

−li−1(z
pi−1

i − ẑ
pi−1

i )

×
(

[zi]
(2−τ−ri−1)/ri − [ẑi]

(2−τ−ri−1)/ri

)

≤ −li−1λie
2
i

(20)

Proposition 3.For i = 2, · · · , n − 1,

2 − τ − ri−1

ri
|zi|

(2−τ−ri−1−ri)/ri([zi]
ri−1/ri − γi)z

pi
i+1

≤
1

12

i+1
∑

j=i−1

ξ2
j + αie

2
i + gi(li−1)e

2
i−1

(21)

wheregi is a continuous function ofli−1, αi > 0 is a
constant, andg2 = 0.

Proposition 4.For the controllerv(ẑ), we obtain

2 − τ − rn−1

rn
|zn|

(2−τ−rn−1−rn)/rn

×([zn]rn−1/rn − γn)υpn

≤
1

8

n
∑

j=1

ξ2
j + ᾱ

n
∑

i=2

e2
i + gn(ln−1)e

2
n−1

(22)

wheregn is a continuous function ofln−1, ᾱ > 0 is a
constant.

Proposition 5. For i = 3, · · · , n,

−li−1(z
pi−1

i − ẑ
pi−1

i )

×
(

[ẑi]
(2−τ−ri−1)/ri − [γi]

(2−τ−ri−1)/ri−1

)

≤
1

16
(ξ2

i−1 + ξ2
i ) + e2

i + hi(li−1)e
2
i−1

(23)
wherehi is a continuous function ofli−1.

ChoosingU =
∑n

i=2 Ui, by Propositions 2-5, we
get

U̇ =
L

2

n
∑

i=1

ξ2
i

+L
(

− l1λ2 + α2 + ᾱ + g3(l2) + θ3(l2)
)

e2
2

+

n−1
∑

i=3

(

− li−1λi + αi + 1 + ᾱ + gi+1(li)

+θi+1(li)
)

e2
i + (−ln−1λn + 1 + ᾱ)e2

n

(24)
By (14), (17) and Assumption 1, we can estimate

[ξn](2−τ−rn)/σ(vpn − z∗pn

n+1) in (15) by the following
proposition, whose proof is given in Appendix.

Proposition 6. There exists a positive constantα̃
such that

[ξn]2−τ−rn(vpn − z∗pn
n+1) ≤

1

4

n
∑

i=1

ξ2
i + α̃

n
∑

i=2

e2
i

(25)
With the help of Proposition 6, definingT = Vn+

U , combining (15) and (24), and recursively choosing

ln−1 ≥ λ−1
n

(1

4
+ 1 + ᾱ + α̃

)

li−1 ≥ λ−1
i

(1

4
+ αi

+1 + ᾱ + α̃ + gi+1(li) + θi+1(li)
)

i = n − 1, · · · , 3

l1 ≥ λ−1
2

(1

4
+ α2 + ᾱ + α̃ + g3(l2) + θ3(l2)

)

(26)

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Fangzheng Gao

E-ISSN: 2224-2856 565 Volume 10, 2015



we obtain

Ṫ = −
L

4

n
∑

i=1

ξ2
i −

L

4

n
∑

i=2

e2
i (27)

Note that from the construction ofT , it can be
verified thatT is positive definite and proper with re-
spect toZ = (z1, · · · , zn, η2, · · · , ηn)T . Denoting the
dilation weight

∆ = (r1, · · · , rn
︸ ︷︷ ︸

for z1,···,zn

, r1, · · · , rn−1
︸ ︷︷ ︸

for η2···,ηn

)
(28)

the closed-loop system can be rewritten as

Ż = LE(Z) + F (Z) (29)

whereE(Z) = (zp1
2 , · · · , z

pn−1
n , υpn , η̇2 · · · , η̇n)T and

F (Z) = (f1,
f2

Lκ2 , · · · , fn

Lκn , 0, · · · , 0)T . Furthermore,
from Definition 1, it can be shown that

T = Vn +

n
∑

i=2

Ui (30)

is homogeneous of degree2 − τ with respect to∆.

3.4 Stability analysis

The main results of the paper can be summarized into
the following theorem:

Theorem 1. For the high-order nonlinear sys-
tem (1) under Assumption 1, the output feedback con-
troller upn = Lκn+1υpn in (4), (16) and (17), renders
that the equilibrium at the origin of the closed-loop
system is globally uniformly finite-time stable.

Proof. We prove Theorem 1 by three steps.
Step 1.We first prove thatupn preserves the equi-

librium at the origin.
From (17) andrn+1pn = rn + τ , we have

vpn(ẑ) = −
[

n
∑

i=1

β̄i[ẑi]
1/ri

]rn+τ

(31)

By which and the definitions ofri’s, we easily see that
upn = Lκn+1υpn is a continuous function of̂z and
upn(ẑ) = 0 for ẑ = 0. This together with (16) and
Assumption 1 implies that the solutions ofZ-system
is defined on a time interval[0, tM ), wheretM > 0
may be a finite constant or+∞, andupn preserves
the equilibrium at the origin.

Step 2. BecauseT (Z) and E(Z) are homoge-
neous of degree2 − τ and τ with respect to∆, by
Lemmas 1 and 2, there is constantsc1, c2 andc3, such
that

c1||Z(t)||2−τ
∆ ≤ T (Z) ≤ c2||Z(t)||2−τ

∆ (32)

∂T (Z)

∂Z
LE(Z) ≤ −c3L||Z(t)||2∆ (33)

By (4), Assumption 1 andL > 1, we can find
constantsδi > 0 and0 < νi ≤ 1 such that

∣

∣

∣

fi(·)

Lκi

∣

∣

∣
≤

c

Lκi

i
∑

j=1

|xj(t)|
(ri+τ)/rj

= c

i
∑

j=1

Lκj(ri+τ)/rj−κi |zj(t)|
(ri+τ)/rj

≤ δi||Z(t)||ri+τ
∆

(34)
since it can be seen that by definitionrj = τκj +
1/(p1 · · · pj−1), so

κj(ri + τ)

rj
− κi

=
κj(τκi+1/(p1···pi−1)+τ)

τκj+1/(p1···pj−1) − κi

=
τκj − (κj − κi)/(p1 · · · pi−1)

τκj + 1/(p1 · · · pj−1)

=
τκj − (κj − κi)/(p1 · · · pi−1)

(τ
∑j

l=1 p1 · · · pl−2 + 1)/(p1 · · · pj−1)
≤ 0

(35)

Noting that fori = 1, · · · , n, ∂T (Z)/∂Zi is ho-
mogeneous of degree2 − τ − ri, from Lemma 5, we
obtain

∣

∣

∣

∂T (Z)

∂Z
F (Z)

∣

∣

∣

≤

n
∑

i=1

∣

∣

∣

∂T (Z)

∂Zi

∣

∣

∣

∣

∣

∣

fi(·)

Lκi

∣

∣

∣
≤ ρ1||Z(t)||2∆

(36)

whereρ1 is a positive constant.
According to (30), (32), (33) and (36), we get

Ṫ =
∂T (Z)

∂Z
LE(Z) +

∂T (Z)

∂Z
F (Z)

≤ −(c3L − ρ1)||Z(t)||2∆

≤ −
(c3L − ρ1)

c
2/(2−τ)
1

T 2/(2−τ)

(37)

Hence, by choosingL > max{ρ1/c3, 1} there
exists a constantc∗ such that

Ṫ ≤ −c∗T 2/(2−τ) (38)

From (38) and Lemma 3, we obtain that the equilib-
rium z = 0 of the closed-loopξ-systems (5), (16) and
(17) is globally uniformly finite-time stable.

Step 3. Since (4) is an equivalent transforma-
tion, the closed-loop system consisting of (1),upn =
Lκn+1υpn in (4), (16) and (17), has the same proper-
ties as the system (5), (16) and (17). Thus, the proof
is completed.
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4 Extension

In this section, we show that the proposed design
method can be extended to handle the high-order non-
linear system (1) in upper-triangular form.

Assumption 2. For i = 1, · · · , n, there are con-
stantsc > 0 andτ ∈ (− 1

∑n
l=1 p1···pl−1

, 0) such that

|fi(t, x, u)| ≤ c
n
∑

j=i+2

|xj |
ri+τ

rj (39)

wherer1 = 1, ri+1 = ri+τ
pi

, i = 1, · · · , n − 1 and
∑n

l=1 p1 · · · pl−1 for the case ofl = 1.
By taking the same design procedure in Section

3, except forL > 1 being replaced by0 < L < 1, we
can construct a continuous output feedback controller
applicable to system (1), and thus obtain the following
concluding theorem.

Theorem 2. For the high-order nonlinear sys-
tem (1) under Assumption 2, the output feedback con-
troller upn = Lκn+1υpn in (4), (16) and (17), renders
that the equilibrium at the origin of the closed-loop
system is globally uniformly finite-time stable.

Proof. The proof can be divided into four steps.
Since the steps 1 and 2 of the proof are the same to
those of Theorem 1 and hence are omitted here.

Step 3. BecauseT (Z) and E(Z) are homoge-
neous of degree2 − τ and τ with respect to∆, by
Lemmas 1 and 2, there is a constantc1, such that

∂T (Z)

∂Z
LE(Z) ≤ −c1L||Z(t)||2∆ (40)

By (4), Assumption 2 and0 < L < 1, we can
find constants̄δi > 0 andν̄i > 0 such that

∣

∣

∣

fi(·)

Lκi

∣

∣

∣

≤ a
n
∑

j=i+2

Lκj(ri+τ)/rj−κi

(

|zj(t)|
(ri+τ)/rj

+|zj(t − dj(t))|
(ri+τ)/rj

)

≤ δ̄iL
1+ν̄i

(

||Z(t)||ri+τ
∆ +

i
∑

j=1

||Z(t − dj(t))||
ri+τ
∆

)

(41)
since it can be seen that by definitionrj = τκj +
1/(p1 · · · pj−1), so

κj(ri + τ)

rj
− κi

=
κj(τκi + 1/(p1 · · · pi−1) + τ)

τκj + 1/(p1 · · · pj−1)
− κi

=
τκj + (κi − κj)/(p1 · · · pi−1)

τκj + 1/(p1 · · · pj−1)
> 1

(42)

Noting that fori = 1, · · · , n, ∂T (Z)/∂Zi is ho-
mogeneous of degree2 − τ − ri, from Lemma 5, one
obtains

∣

∣

∣

∂T (Z)

∂Z
F (Z)

∣

∣

∣

≤
n
∑

i=1

∣

∣

∣

∂T (Z)

∂Zi

∣

∣

∣

∣

∣

∣

fi(·)

Lκi

∣

∣

∣

≤

n
∑

i=1

ρ̄i1L
1+ν̄0||Z(t)||2∆

+
n
∑

i=1

ρ̄i2L
1+ν̄0||Z(t − di(t))||

2
∆

≤ ρ̄1L
1+ν̄0 ||Z(t)||2∆

+ρ̄2L
1+ν̄0

n
∑

i=1

||Z(t − di(t))||
2
∆

(43)

where ρ̄i1, ρ̄i2, i = 1, · · · , n, ρ̄1 =
∑n

i=1 ρ̄i1, ρ̄2 =
max1≤i≤n{ρ̄i2} and ν̄0 = max1≤i≤n{ν̄i} > 0 are
positive constants.

According to (29), (32), (40) and (43), one gets

V̇ =
∂T (Z)

∂Z
LE(Z) +

∂T (Z)

∂Z
F (Z)

+

n
∑

i=1

λ

1 − ϑi
||Z(t)||2∆ −

n
∑

i=1

λ||Z(t − di(t))||
2
∆

≤ −
(

c1L − ρ̄1L
1+ν̄0 −

n
∑

i=1

λ

1 − ϑi

)

||Z(t)||2∆

−
(

λ − ρ̄2L
1+ν̄0

)

n
∑

i=1

||Z(t − di(t))||
2
∆

(44)
Therefore, by choosing

λ = ρ̄2L
1+ν̄0 (45)

and

0 < L < min
{( c1

ρ̄1 + ρ̄2
∑n

i=1
1

1−ϑi

)1/ν̄0

, 1
}

(46)
there exists a constantc̄∗ such that

V̇ ≤ −c̄∗||Z(t)||2∆ (47)

The rest of the proof is similar to that of Theorem 1
and hence is omitted here.

5 Simulation example

To illustrate the effectiveness of the proposed ap-
proach, we consider the following low-dimensional
system

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Fangzheng Gao

E-ISSN: 2224-2856 567 Volume 10, 2015



0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time(s)

 

 
x

1

(a) x1

0 0.2 0.4 0.6 0.8 1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

Time(s)

 

 
x

2

(b) x2

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

Time(s)

 

 
η

2

(c) η2

0 0.2 0.4 0.6 0.8 1
−400

−300

−200

−100

0

100

200

Time(s)

 

 
u

(d) u

Figure 1: The responses of the closed-loop system
(48) and (49).

ẋ1 = x
5/3
2 + 1

10x
10/11
1

ẋ2 = u + 1
10x

5/11
1 + 1

8x
1/2
2 sinx2

y = x1

(48)

where p1 = 5
3 and p2 = 1. Chooseτ = − 1

11 ∈

(−3
8 ,+∞), then r1 = 1, r2 = r1+τ

p1
= 6

11 and

r3 = r2+τ
p2

= 5
11 . By Lemma 6, it can be verified that

|f1| ≤
1
10 |x1|

10/11 and |f2| ≤
1
10 (|x1|

5/11 + |x2|
5/6)

satisfy Assumption 1 witha = 1
10 . Hence the con-

troller proposed in this paper is applicable. Following
the design procedure given in Section 3, we can get

η̇2 = −Ll1[η2 + l1y]10/11

u = −L8/5
[

β2[η2 + l1y] + β2β1[y]
]5/11 (49)

In the simulation, the gains in (49) are chosen as
β1 = 2.2, β2 = 24, l1 = 20 and L = 9. With
the initial valuesx1(0) = 0.3, x2(0) = −0.5 and
η2(θ) = −0.2, Figure 1 is obtained to demonstrates
the effectiveness of the proposed controller.

6 Conclusion

In this paper, a continuous output feedback stabiliz-
ing controller is presented for a class of high-order
nonlinear systems under a weaker condition. The
controller designed preserves the equilibrium at the
origin, and guarantees the global uniform finite-time
stability of the systems. Some interesting problems

are still remained, e.g., if the growth ratec in As-
sumption 1 is an unknown constant, how can design
an adaptive finite-time output feedback controller for
system (1)? In recent years, many results on control
of stochastic nonlinear systems have been achieved
[25-29], but these papers only consider the systems
in time-invariant case. Hence an important issue is
whether the results can be extended to the time vary-
ing counterpart.
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Appendix

Proof of Proposition 2. Noting that (2 − τ −
ri−1)/ripi−1 ≥ 1, by using Lemma 5 withp = 1,
a = b = (2 − τ − ri−1)/ripi−1 and ei = [z

pi−1

i −

ẑ
pi−1

i ]1/ripi−1, one leads to

−li−1(z
pi−1

i − ẑ
pi−1

i )

×
(

[zi]
(2−τ−ri−1)/ri − [ẑi]

(2−τ−ri−1)/ri

)

≤ −li−1λi|ei|
1/ripi−1 |ei|

(2−τ−ri−1)/ripi−1

= −li−1λie
2
i

(A1)

whereλi = 2(2ripi−1−2)/(2−τ−ri−1) > 0 is a constant.
Proof of Proposition 3. Using γi = ηi +

li−1zi−1, (10), (16) and Lemmas 4-6, it follows that

2 − τ − ri−1

ri
|zi|

(2−τ−ri−1−ri)/ri([zi]
ri−1/ri − γi)z

pi
i+1

=
2 − τ − ri−1

ri
|zi|

(2−τ−ri−1−ri)/ri

×
(

[zi]
ri−1/ri − [ẑi]

ri−1/ri + [ẑi]
ri−1/ri − γi

)

zpi
i+1

≤
2 − τ − ri−1

ri
|ξi+1 − βiξi|

ri+1pi

×|ξi − βi−1ξi−1|
(2−τ−ri−1−ri)

×
(

|z
pi−1

i − ẑ
pi−1

i |ri−1/pi−1ri + li−1|zi−1 − ẑi−1|)
)

≤ ki3

(

|ξi+1|
ri+1pi + |ξi|

ri+1pi

)

×
(

|ξi|
2−τ−ri−1−ri + |ξi−1|

2−τ−ri−1−ri

)

×(|ei|
ri−1 + li−1|ei−1|

ri−1)

≤
1

12

i+1
∑

j=i−1

ξ2
j + αie

2
i + gi(li−1)e

2
i−1

(A2)
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whereki3 > 0, αi > 0 are constants andgi is a con-
tinuous function ofli−1.

Proof of Proposition 4. By (10), (17) and the
definition ofei, one gets

|vpn(ẑ)| =
∣

∣

∣

n
∑

i=1

β̄i[ẑi]
σ/ri

∣

∣

∣

pnrn+1/σ

≤ ki4

(

n
∑

i=1

|ξi|
(rn+τ)/σ +

n
∑

i=1

|ei|
(rn+τ)/σ

)

(A3)
whereki4 is a positive constant.

Similar to (A2), with the use of Assumption 1,
Lemmas 4-6 and (A3), (22) holds immediately.

Proof of Proposition 5. According toγi = ηi +
li−1zi−1, (10), Lemmas 3-5 and the definition ofei,
one obtains

li−1(z
pi−1

i − ẑ
pi−1

i )

×
(

[ẑi]
(2−τ−ri−1)/ri − [γi]

(2−τ−ri−1)/ri−1

)

≤ −li−1|ei|
ripi−1

∣

∣

∣
[ηi + li−1ẑi−1]

(2−τ−ri−1)/ri

−[ηi + li−1zi−1]
(2−τ−ri−1)/ri−1

∣

∣

∣

≤ kn5|ei|
ripi−1 |ei−1|

ri−1

(

|ei−1|
2−τ−2ri−1

+|ξi−1|
2−τ−2ri−1 + |ξi|

2−τ−2ri−1 + |ei|
2−τ−2ri−1

)

≤
1

16
(ξ2

i−1 + ξ2
i ) + e2

i + hi(li−1)e
2
i−1

(A4)
wherekn5 is a positive constant andhi is a continuous
function ofli−1.

Proof of Proposition 6. By (10), (22) and Lem-
mas 4-6, it follows that

[ξn](2σ−τ−rn)/σ(vpn − z∗pn
n+1)

= −[ξn]2−τ−rn

([

n
∑

i=1

β̄i[zi]
1/ri

]rn+τ

−
[

n
∑

i=1

β̄i[ẑi]
1/ri

]rn+τ)

≤ |ξn|
2−τ−rn

∣

∣

∣

n
∑

i=2

β̄i([zi]
1/ri − [ẑi]

1/ri)
∣

∣

∣

rn+τ

≤ kn6|ξn|
2−τ−rn

(

n
∑

i=2

|zi − ẑi|

×(|zi − ẑi|
(1−ri)/ri + |zi|

(1−ri)/ri)
)rn+τ

≤ k̄n6|ξn|
2−τ−rn

(

n
∑

i=2

|ei|
ri

×(|ei|
1−ri + |ξi−1|

1−ri + |ξi|
1−ri)

)rn+τ

≤
1

4

n
∑

i=1

ξ2
i + α̃

n
∑

i=2

e2
i

(A5)

wherekn6, k̄n6 andα̃ are positive constants.
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